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INTRODUCTION

For statically unstable aircraft, there is an increased need to understand

the effects of control saturation. The longitudinal mode of unstable aircraft

usually has a single unstable pole, whereas the lateral-directional mode may

have two real poles or a pair of complex-conjugate poles in the right half

plane. Reduced-order models are often used to determine the stabiliy and per-

formance of the aircraft approximately. This study examines the effects of

control saturation using reduced-order models.

The stability boundaries for command augmentation systems are determined

for three types of singularities: saddle-point, unstable nodes, and unstable

foci. Control saturation imposes bounds on command vectors for which equili-

brium can be attained. For the cases of saddle-point and unstable nodes, the

region of stability reduces to zero for command vectors which demand a steady

value of control exceeding the control saturation limits. In the case of

unstable foci, the region of attraction does not gradually reduce in size, but

at some point it breaks abruptly.
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STABILITY AUGMENTATION SYSTEM

A block diagram of the system under consideration is shown. It consists of

a dynamic system to be controlled (the "plant"), a feedback controller, and a

saturating element on one or more of the controls. Command inputs can be

ignored in the stability analysis of this constant-coefficient system.
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COMMAND AUGMENTATION SYSTEM

Specific inputs and outputs must be considered in the command augmentation

system. Defining y as an output vector that is a linear combination of state

vector components, y* is the desired value of the output. The resulting closed-

loop system is described by an ordinary differential equation, whose equili-

brium state and control vectors, x* and u*, can be related to the desired output.

The steady-state value of control is independent of feedback gain, which

can be obtained either from open- or closed-loop dynamics. For open-loop

unstable systems, feedback is mandatory to achieve stability and command equi-

librium. The linear feedback regulator provides satisfactory transient response

to meet performance specifications otherwise not obtainable. The state

equilibrium depends only on the open-loop dynamics and control magnitude. A

steady-state control u* exists only for the "nonsingular" command vector.

y* + , PLANT ___ v

I

= Fx " Gu OUTPUT:

u = CB _ + CF Y" I" = Hx x°

CLOSED-LOOP

= (F - G CF) _x* G CF Y_"

EEEIL_

_x" = -(F - G CF)-I G CF Y_"

u" : - CB (F - G CF)-] G CF _Y" ÷ CF _.Y"

WHERE

CF = $22 + C S12

$22 = - HxF-I G

S12 = (-F-IG) $22

CB = - C

OPEN LOOP EQUILIBRIUM_

x" = - F-I G u"

Y" = Hx x" = - HxF-I G u"

u* = (-HxF-I G)-I Y"

= - (HxF-I G)-I Hx x"
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COMMAND AUGMENTATION SYSTEM (CONCLUDED)

IT CAN BE SHOWN THAT

u* : - CB(F - G CF )-I G CF Y* + CF Y*

= (-HxF-1 G)-I y°

• U° INDEPENDENT OF GAIN C

• C DETERMINES RESPONSE

• X° LOCATION DETERMINED BY STATE EQUATION

• U° EXISTS FOR "NONSINGULAR COMMAND n EQUILIBRIUM
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EFFECTS OF CONTROL SATURATION

The control saturation limits and open-loop dynamics determine the minimum

and maximum values of state equilibrium. Saturation prevents the system from

attaining the desired equilibrium and response, and it imposes bounds on

achievab]e command vector y*. To avoid saturation, desired state equilibrium

points must lie within the unsaturated region. However, this still does not

guarantee that the trajectories would not enter a saturated-control region, for

some initial conditions and/or commands. This is mainly determined by the

eigenvectors in the unsaturated region. Thus, saturation enforces bounds on the

command vectors for which equilibrium could actually be attained without satura-

tion. Equilibrium cannot be attained for the command vectors for which the

state equilibrium point is located in the saturated region.

Feedback gain C alters the response of the system, but it does not affect
u*. The command vectors for which equilibrium can be attained are independent

of feedback gain. Hx does not affect the state equilibrium or the feedback
gain. It changes the prefilter gain which shapes input to achieve the desired

equilibrium, u* changes with the command vector; hence, the saturation boun-
daries change with commands.

-U.UM < U_° < + U M

x" = - F-I G u*

CONTROL SATURATION

x-U < x° <__x+uM
M

BOUNDS ON STATE EQUILIBRIUM

Y* = Hx x°

Y-th < y- < Y÷th

"BOUNDS ON ACHIEVABLE COMMANDS

• DEPENDENCE OF STATE EOUILIBRIIIM ON F-I G

, EFFECTS OF VARIATIONS OF C, Hx
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STABILITY BOUNDARIES FOR THE SADDLE-POINT: MCE CASE

ORIGINAL PAGE I$
OF POOR OU4LITY

The stability boundaries for the minimum-control-energy (MCE) case are

shown on the next three figures. Note the variations in saturation boundaries

and location of x* with changes in the command vector. The region of stability

remains unchanged. Equilibrium can be achieved only for those command vectors

for which the equilibrium point lies within the saturated region. Invariance of

stability boundaries with changes in command command vectors is a unique result

for the saddle-point MCE case.
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MCE CASE (CONCLUDED)
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ORIGINAL PAGE IS

OF POOR QUALITY
STABILITY BOUNDARIES FOR THE SADDLE-POINT: LOW GAIN CASE

The stability boundaries are shown on the next three figures, where unlike

the minimum-control-energy (MCE) case, the stability boundaries change with com-

mands. The locations of equilibrium points in the saturated region do not

change with the command vectors. The region of stability is biggest for zero

command, i.e., the maximum region of stability is achieved for the stability

augmentation case. For non-zero command vectors, the stability region shrinks.

It reduces to zero when the desired equilibrium control exceeds the saturation
limits.

For each command vector, trajectories seek separate equilibrium points;
hence, the trajectories starting from the same initial conditions follow

entirely different paths in the phase plane. For this reason, markedly dif-

ferent time-histories for different command vectors are obtained, though the

system eigenvalues/eigenvectors remain unchanged.
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ORIGINAL PAGE IS

LOW-GAIN CASE (CONCLUDED) OF' POOR QUALITY
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STABILITY BOUNDARIES FOR UNSTABLE NODES

The next three figures show the stability boundaries for the case of

unstable nodes for various command vectors. As noticed before, the saturation

boundaries here also change with changes in commands. The sizes of limit

cycles, which represent the saturation boundaries, also change. The region of

stability is biggest for the stability augmentation system (SAS) case. For

increasing command magnitudes, the steady-state equilibrium point moves away

from the origin. The region of stability shrinks, and eventually it reduces to

zero for commands that require u* ) lum I.
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UNSTABLEMODES(CONCLUDED)
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STABILITY BOUNDARIES OF UNSTABI,E FO('I

ORIGINAL PAGE IS
OF POOR OUALITY

The stability boundaries for the case of unstable foci are unstable

]im.it cycles, as shown on the next: six figures. Apparently, there is

little variation in the size of stability region with commands. The

stable equilibrium point moves to the right of the origin with increasing

command values, and the saturation boundaries also shift. At control

saturation limits, this equilibrium point lies on the saturation boundary,

but the region of stablity does not shrink to zero, contrary to the cases

of saddle-point and unstable nodes.

Further increase in commands moves the desired equilibrium point

farther to the right, and another limit cycle emerges. The trajectories

within it converge to this new limit cycle; those within the original

limit cycle also converge to it. Thus, the new limit: cycle is stable.

This "inner" limit cycle grows with increase in commands, until it co-

incides with the "outer" limit cycle. Any further increase in command

results in breaking of the closed stability region (or "bursting" of the

limit cycle), making the entire region unstable. This peculiar result

in the case of unstable foci is under further investigation.

Y = 0.0 C = [0.95 2.27] Y = O,q
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UNSTABLE FOCl (CONTINUED)
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UNSTABLE FOCl (CONTINUED)
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UNSTABLE FOCl (CONCLUDED)
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CONCLUSIONS AND FUTURE WORK

The Stability Augmentation System (SAS) is a special case of the Command

Augmentation System (CAS). Control saturation imposes bounds on achievable

commands. The state equilibrium depends only on the open-loop dynamics and

control deflection. The control magnitude to achieve a desired command

equilibrium is independent of the feedback gain. A feedback controller provides

the desired response, maintains the system equilibrium under disturbances, but

it does not affect the equilibrium values of states and control.

The saturation boundaries change with comands, but the locations of the

equilibrium points in the saturated region remain unchanged. Nonzero command

vectors yield saturation boundaries that are asymmetric with respect to the

state equilibrium. Except for the saddle-point case with MCE control law, the

stability boundaries change with commands. For the cases of saddle-point and

unstable nodes, the region of stability decreases with increasing command magni-

tudes; it is reduced to zero for commands that require steady-state control

u  lUml

The regions of stability are biggest for the SAS. In the case of unstable

loci, the region of stability does not vanish at u = um An "inner" ]imit
cycle is obtained, which grows with increase in commands until it coalesces with

the "outer" limit cycle. Any further increase in command breaks this closed

stability boundary. For a fixed degree of stability, different commands cause

markedly different responses because they seek different equilibrium states.

• STABILITY AUGMENTATION SYSTEM: A SPECIAL CASE OF

COMMAND AUGMENTATION SYSTEM

• CONTROL SATURATION LIMITS ACHIEVABLE COMMANDS

• DEPENDENCE OF STATE EQUILIBRIUM ON OPEN-LOOP DYNAMICS

AND CONIROL

• STATE EQUILIBRIUM, STEADY-STATE CONTROL: INDPENDENT

OF FEEDBACK GAIN

• FEEDBACK: TO ACHIEVE DESIRED RESPONSE: MAINTAIN

EQUILIBRIUM IN PRESENCE OF DISTURBANCE
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CONCLUSIONS

• SATURATION BOUNDARIES CHANGE WITH COMMAND VECTORS

• STABILITY BOUNDARIES CHANGE EXCEPT FOR MCE CASE

• BIGGEST REGION OF STABILITY FOR SAS

• REGION OF STABILITY REDUCES TO ZERO FOR Y = t YMAX

(EXCEPT IN THE CASE OF UNSTABLE FOCI)

• MARKEDLY DIFFERENT "LOOKING" RESPONSES FOR DIFFERENT

COMMAND VECTORS

FUTURE WORK

• STABILITY BOUNDARIES FOR TWO-INPUT COMMAND

AUGMENTATION SYSTEM

• DESIGN OF LATERAL-DIRECTIONAL COMMAND AUGMENTATION

SYSTEM

• VARIATION OF STABILITY BOUNDARIES WITH FLIGHT

CONDITIONS
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